
2020 FRC Java
Control System

Introductions

⬡ We were one of 25 teams using Java invited to beta
test the 2020 FRC Control System

2

Changes

⬡ Documentation
⬡ New Command Based framework
⬡ Synchronous PID Controller
⬡ Kinematics classes
⬡ Path Planner
⬡ C++/Java Simulator UI

3

ScreenSteps à frc-docs

⬡ The new documentation can be found at https://frc-
docs.readthedocs.io/, which has replaced the
ScreenSteps documentation

⬡ Much of the 2020 changes are in the documentation
already

4

https://frc-docs.readthedocs.io/

Command
Framework

Lessons Learnt in Porting Code

⬡ Easier to cut and paste existing commands into a working
2020 framework than trying to patch up a 2019 code base
∙ May depend on size of your existing code base

⬡ Existing code will continue to work for 2020 (i.e. support for
old command structure).
∙ However, it is deprecated à so good time to start

switching

6

Command-Based Framework

⬡ The framework was rewritten for the following
reasons:
∙ Readability and maintainability
∙ Encapsulation and separation of responsibilities
∙ Restrictive API design
∙ Clutter

7

Command Framework Location
⬡ The new framework is located in the frc2 namespace for C++ and the

edu.wpi.first.wpilibj2 package in Java.
⬡ The command framework is a separate vendor library

∙ Can have old or new command framework installed for a project
⬡ Examples:

∙ import edu.wpi.first.wpilibj2.command.CommandBase;
∙ From manage vendor libraries in VScode

8

Commands & Subsystems

⬡ Command (Java, C++) and Subsystem (Java, C++) are
both now interfaces as opposed to abstract classes

⬡ Recommended method is to subclass the abstract
CommandBase and SubsystemBase class
∙ public class ExampleCommand extends CommandBase {
∙ public class ExampleSubsystem extends SubsystemBase {

9

New Basic Structure
The root package/directory generally will contain four classes and two directories:

⬡ Main, which is the main robot application. Most users should not touch this class.
⬡ Robot, which is responsible for the main control flow of the robot code.
⬡ RobotContainer, which holds robot subsystems and commands, and is where most of

the declarative robot setup (e.g. button bindings) is performed.
⬡ Constants, which holds globally-accessible constants to be used throughout the robot.
⬡ Subsystems directory
⬡ Commands directory

10

Robot.java
⬡ Construct RobotContainer in robotInit()
⬡ CommandScheduler.getInstance().run() call in the robotPeriodic()

to run commands
⬡ The autonomousInit() method schedules an autonomous

command returned by the RobotContainer instance. However,
logic for selecting autonomous command to run can be handled
inside of RobotContainer

⬡ The teleopInit() method cancels any still-running autonomous
commands. This is essentially the same as before.

11

RobotContainer.java

⬡ Most of the robot setup/customization
⬡ Create subsystems:

private final ExampleSubsystem m_exampleSubsystem = new
ExampleSubsystem();

∙ Notice that subsytems are “private” unlike past years
⬡ Must pass needed subsystems to commands (called

“dependency injection”)
private final ExampleCommand m_autoCommand = new

ExampleCommand(m_exampleSubsystem);

⬡ Button Bindings à no more OI.java

12

Constants.java

⬡ Place for useful constants such as speeds, unit conversion
factors, PID gains, and sensor/motor ports

⬡ All constants should be declared public static final so that
they are globally accessible and cannot be changed

⬡ An import static statement imports the static namespace
of a class into the class in which you are working
import static

edu.wpi.first.wpilibj.templates.commandbased.Constants.OIConstants.*;

13

Other Changes: Command Groups

⬡ CommandGroup class no longer exists – replaced with:
∙ SequentialCommandGroup, ParallelCommandGroup
∙ ParallelRaceGroup (ends when any subcommand

finishes)
∙ ParallelDeadlineGroup (ends when specific

subcommand finishes)
⬡ Each implements Command interface so can be composed

14

Other Changes: Composing Commands
new SequentialCommandGroup(

new DriveToGoal(m_drive),
new ParallelCommandGroup(new RaiseElevator(m_elevator),

new SetWristPosition(m_wrist)),
new ScoreTube(m_wrist));

15

Other Changes: Inline Commands

⬡ Simplifies “small” commands with single use
private void configureButtonBindings() {
// Grab the hatch when the 'A' button is pressed.
new JoystickButton(m_driverController, Button.kA.value)

.whenPressed(new InstantCommand(m_hatchSubsystem::grabHatch,

m_hatchSubsystem));

⬡ Note method reference is object::method
⬡ Especially useful with InstantCommand

16

Other Changes

⬡ requires() method has been renamed to
addRequirement()

⬡ interrupted() method has been rolled into the end()
method, which now takes a parameter specifying
whether the command was interrupted (false if it
ended normally).

17

PID Controls

PID Controller
⬡ Old PIDController Class created a separate thread that read PIDSource and

wrote PIDOutput periodically.
⬡ New PIDController runs synchronously from main robot loop
⬡ Example:

public class ShooterSubsystem extends PIDSubsystem {
public ShooterSubsystem() {
super(new PIDController(kP, kI, kD));
getController().setTolerance(kShooterToleranceRPS);
m_shooterEncoder.setDistancePerPulse(

kEncoderDistancePerPulse);
setSetpoint(kShooterTargetRPS);

}

19

PID Controller
⬡ Also need to provide getMeasurement and useOutput

@Override
public void useOutput(double output, double setpoint) {

m_shooterMotor.setVoltage(output +
m_shooterFeedforward.calculate(setpoint));

}

@Override
public double getMeasurement() {

return m_shooterEncoder.getRate();
}

20

Kinematics

Kinematics and Odometry

⬡ Brand new
⬡ Help convert between a universal ChassisSpeeds object,

containing linear and angular velocities for a robot to
usable speeds for each individual type of drivetrain i.e. left
and right wheel speeds for a differential drive, four wheel
speeds for a mecanum drive, or individual module states
(speed and angle) for a swerve drive.

22

Chassis Speed
⬡ vx: The velocity of the robot in the x (forward) direction (in

meters/sec)
⬡ vy: The velocity of the robot in the y (sideways) direction.

(Positive values mean the robot is moving to the left) (in
meters/sec)
∙ Note: vy = 0 for non-holonomic drive

⬡ omega: The angular velocity of the robot (in radians/sec)
⬡ Can also use field relative measurements using

ChassisSpeeds.fromFieldRelativeSpeeds()

23

Differential Drive Kinematics
⬡ DifferentialDriveKinematics has one constructor argument à the track width of

the robot.

DifferentialDriveKinematics kinematics = new
DifferentialDriveKinematics(Units.inchesToMeters(27.0));

// chassis speeds: 2 m/s speed,1 radian/s angular velocity.

var chassisSpeeds = new ChassisSpeeds(2.0, 0, 1.0);

// Convert to wheel speeds

DifferentialDriveWheelSpeeds wheelSpeeds =
kinematics.toWheelSpeeds(chassisSpeeds);

// wheel velocities

double leftVelocity = wheelSpeeds.leftMetersPerSecond;

double rightVelocity = wheelSpeeds.rightMetersPerSecond;
24

Differential Drive Odometry
⬡ Constructor requires angle (as Rotation2d) and optionally field

position (as Pose2d)
∙ Facing opponent alliance = 0 degrees, turning left = positive

degrees
⬡ Example:

// our pose is 5 meters along the long end of field and
// center of the field along the short end, facing forward.
DifferentialDriveOdometry m_odometry = new
DifferentialDriveOdometry(

getGyroHeading(), new Pose2d(5.0, 13.5, new Rotation2d());

25

Updating Position

⬡ Odometry update method should be called periodically (e.g. in
subsystem periodic())

⬡ Encoder distances should be in meters,

public void periodic() {

var gyroAngle = Rotation2d.fromDegrees(-m_gyro.getAngle());

// Update the pose

m_pose = m_odometry.update(gyroAngle,
m_leftEncoder.getDistance(), m_rightEncoder.getDistance());

26

Trajectory Generation

⬡ Splines: curves through a set of points.
WPILib supports Hermite Clamped Cubic
and Hermite Quintic

⬡ Start by creating a TrajectoryConfig object
∙ Arguments: maxVelocity,

maxAcceleration
∙ Change startVelocity, endVelocity,

reversed, constraints with set*
methods

27

Trajectory Generation

⬡ generateTrajectory(…) creates a trajectory given a set
of Pose2d’s and a TrajectoryConfig
∙ Number/type of parameters determine if you use

cubic/quintic

28

Example Trajectory Generation
var sideStart = new Pose2d(Units.feetToMeters(1.54),

Units.feetToMeters(23.23), Rotation2d.fromDegrees(-180));

var crossScale = new Pose2d(Units.feetToMeters(23.7),
Units.feetToMeters(6.8), Rotation2d.fromDegrees(-160));

var interiorWaypoints = new ArrayList<Translation2d>();

interiorWaypoints.add(new Translation2d(Units.feetToMeters(14.54), 7.0));

interiorWaypoints.add(new Translation2d(Units.feetToMeters(21.04), 6.0));

TrajectoryConfig config = new TrajectoryConfig(Units.feetToMeters(12), 4);

var trajectory = TrajectoryGenerator.generateTrajectory(
sideStart, interiorWaypoints, crossScale, config);

29

Following a Trajectory

⬡ Builtin Ramsete controller
∙ calculate() method takes current position and

Trajectory.state (i.e. goal) as inputs
⬡ Example:

// sample the trajectory at 3.4 seconds from the beginning
Trajectory.State goal = trajectory.sample(3.4);
ChassisSpeeds adjustedSpeeds =

controller.calculate(currentRobotPose, goal);

⬡ Use kinematics classes to convert to wheel speeds
⬡ Use PIDcontrol to change wheel speeds

30

FRC Java/C++ Simulator

⬡ Works as a good
debugger

⬡ Allows you to view
variables, threads, etc.

⬡ Simulates motor
controllers and various
sensors defined

31

Thank you for
attending

