BOz7

2020 FRC Java
Control System

Introductions

—

We were one of 2b teams using Java invited to beta
test the 2020 FRC Control System

Changes

Documentation

New Command Based framework
Synchronous PID Controller
Kinematics classes

Path Planner

C++/]Java Simulator Ul

ScreenSteps - frc-docs

—

The new documentation can be found at https://frc-
docs.readthedocs.io/, which has replaced the
ScreenSteps documentation

Much of the 2020 changes are in the documentation
already

https://frc-docs.readthedocs.io/

Command
Framework

~

o

Lessons Learnt in Porting Code
Easier to cut and paste existing commands into a working _
2020 framework than trying to patch up a 2019 code base
May depend on size of your existing code base

Existing code will continue to work for 2020 (i.e. support for

old command structure). '
However, it is deprecated = so good time to start
switching

Command-Based Framework

—

The framework was rewritten for the following
reasons:
Readability and maintainability
Encapsulation and separation of responsibilities
Restrictive APl design
Clutter

Command Framework Location

—

The new framework is located in the frc2 namespace for C++ and the
edu.wpi.first.wpilibj2 package in Java.

The command framework is a separate vendor library
Can have old or new command framework installed for a project

Examples:
import edu.wpi.first.wpilibj2.command.CommandBase;
From manage vendor libraries in VScode

ir @ |Check to uninstall libraries 0Selected OK

‘. KauailLabs_navX FRC 3.1.387
'@ REVRobotics 1.4.34
) @ WPILib-New-Commands 2020.0.0

Commands & Subsystems

—

Command (Java, C++) and Subsystem (Java, C++) are,
both now interfaces as opposed to abstract classes

Recommended method is to subclass the abstract

CommandBase and SubsystemBase class

public class ExampleCommand extends CommandBase {
public class ExampleSubsystem extends SubsystemBase {

New Basic Structure

—

The root package/directory generally will contain four classes and two directories:

Main, which is the main robot application. Most users should not touch this class.
Robot, which is responsible for the main control flow of the robot code.

RobotContainer, which holds robot subsystems and commands, and is where most of
the declarative robot setup (e.g. button bindings) is performed.

Constants, which holds globally-accessible constants to be used throughout the robot.

Subsystems directory

Commands directory

10

Robot.java

Construct RobotContainer in robotlnit()

CommandScheduler.getinstance().run() call in the robotPeriodic()
to run commands

The autonomouslinit() method schedules an autonomous
command returned by the RobotContainer instance. However,
logic for selecting autonomous command to run can be handled
inside of RobotContainer ,

The teleoplnit() method cancels any still-running autonomous
commands. This is essentially the same as before.

11

RobotContainer.java

Most of the robot setup/customization
Create subsystems:

private final ExampleSubsystem m exampleSubsystem = new
ExampleSubsystem() ;

Notice that subsytems are “private” unlike past years

Must pass needed subsystems to commands (called
“dependency injection”) -

private final ExampleCommand m autoCommand = new
ExampleCommand (m exampleSubsystem) ;

Button Bindings = no more Ol.java

-

12

Constants.java

—

Place for useful constants such as speeds, unit conversion _
factors, PID gains, and sensor/motor ports

All constants should be declared public static final so.that
they are globally accessible and cannot be changed

An import static statement imports the static namespace
of a class into the class in which you are working

import static
edu.wpi.first.wpilibj.templates.commandbased.Constants.OIConstants.*;

-

13

Other Changes: Command Group§'

CommandGroup class no longer exists — replaced with:
SequentialCommandGroup, ParallelCommandGroup
ParallelRaceGroup (ends when any subcommand
finishes)

ParallelDeadlineGroup (ends when specific
subcommand finishes)

Each implements Command interface so can be composed

14

Other Changes: Composing Comm'and§/m\

new SequentialCommandGroup(

new DriveToGoal(m_drive), /’<

new ParallelCommandGroup(new RaiseElevator(m_elevator),

on

new SetWristPosition(m_wrist)),

new ScoreTube(m_wrist));

— N
yf DriveToGoal

Other Changes: Inline Command§'

Simplifies “small” commands with single use

private void configureButtonBindings () {
// Grab the hatch when the 'A' button is pressed.
new JoystickButton (m driverController, Button.kA.value)
.whenPressed (new InstantCommand (m hatchSubsystem: :grabHatch

m_hatchSubsystem)) ;

Note method reference is object:method ,

Especially useful with InstantCommand

4

16

Other Changes

requires() method has been renamed to
addRequirementy)

interrupted() method has been rolled into the end)
method, which now takes a parameter specifying .
whether the command was interrupted (false if it
ended normally).

17

PID Controls

PID Controller

——

Old PIDController Class created a separate thread that read PIDSource and
wrote PIDOutput periodically.

New PIDController runs synchronously from main robot loop

Example:
public class ShooterSubsystem extends PIDSubsystem {
public ShooterSubsystem() {
super (new PIDController (kP, kI, kD)); .
getController () .setTolerance (kShooterToleranceRPS) ;
m shooterEncoder.setDistancePerPulse (
kEncoderDistancePerPulse) ;
setSetpoint (kShooterTargetRPS) ; .
}

19

PID Controller

Also need to provide getMeasurement and useOutput
@Override
public void useOutput (double output, double setpoint)
m shooterMotor.setVoltage (output +
m shooterFeedforward.calculate (setpoint)) ;

}

@Override
public double getMeasurement () {
return m shooterEncoder.getRate() ;

}

{

20

Kinematics

Kinematics and Odometry

Brand new

Help convert between a universal ChassisSpeeds object,
containing linear and angular velocities for a robot to
usable speeds for each individual type of drivetrain I.e. left
and right wheel speeds for a differential drive, four wheel
speeds for a mecanum drive, or individual module states
(speed and angle) for a swerve drive.

22

Chassis Speed

—

vx: [he velocity of the robot in the x (forward) direction (in
meters/sec)

vy: The velocity of the robot in the y (sideways) direction.
(Positive values mean the robot is moving to the left) (in
meters/sec)

Note: vy = O for non-holonomic drive
omega: | he angular velocity of the robot (in radians/sec)

Can also use field relative measurements using
ChassisSpeeds.fromFieldRelativeSpeeds|)

23

Differential Drive Kinematics

DifferentialDriveKinematics has one constructor argument - the track width of
the robot.

DifferentialDriveKinematics kinematics = new
DifferentialDriveKinematics (Units.inchesToMeters (27.0)) ;

// chassis speeds: 2 m/s speed,l radian/s angular velocity.
var chassisSpeeds = new ChassisSpeeds (2.0, 0, 1.0);
// Convert to wheel speeds

DifferentialDriveWheelSpeeds wheelSpeeds =
kinematics.toWheelSpeeds (chassisSpeeds) ;

// wheel velocities .

double leftVelocity = wheelSpeeds.leftMetersPerSecond;
double rightVelocity = wheelSpeeds.rightMetersPerSecond;

24

Differential Drive Odometry

—

Constructor requires angle (as Rotation2d) and optionally field

position (as Pose2d)
Facing opponent alliance = O degrees, turning left = positive

degrees

Example:
// our pose is 5 meters along the long end of field and _
// center of the field along the short end, facing forward.
DifferentialDriveOdometry m odometry = new -
DifferentialDriveOdometry (

getGyroHeading (), new Pose2d (5.0, 13.5, new RoEationZd());

V)

Updating Position

—

Odometry update method should be called periodically (e.g. in
subsystem periodic())

Encoder distances should be in meters,

public void periodic () { .
var gyroAngle = Rotation2d.fromDegrees (-m gyro.getAngle())
// Update the pose

m pose = m odometry.update (gyroAngle, .
m leftEncoder.getDistance (), m rightEncoder.getDistanced)) ;

26

Trajectory Generation

Splines: curves through a set of points.
WPILib supports Hermite Clamped Cubic
and Hermite Quintic

Start by creating a TrajectoryConfig object
Arguments: maxVelocity,
maxAcceleration
Change startVelocity, endVelocity,
reversed, constraints with set*
methods

27

Trajectory Generation

—

generatelrajectory(...) creates a trajectory given a set ,
of Pose2d’s and a TrajectoryConfig
Number/type of parameters determine if you use
cubic/quintic

28

Example Trajectory Generation

var sideStart = new Pose2d(Units.feetToMeters(1.54),
Units.feetToMeters (23.23), Rotation2d.fromDegrees (-180)) ;

var crossScale = new Pose2d(Units.feetToMeters (23.7),
Units.feetToMeters (6.8), Rotation2d.fromDegrees (-160)) ;

var interiorWaypoints = new ArraylList<Translation2d>() ;
interiorWaypoints.add (new Translation2d(Units.feetToMeters(14.54), 7.0));
interiorWaypoints.add(new Translation2d(Units.feetToMeters(21.04), 6.0));

TrajectoryConfig config = new TrajectoryConfig(Units.feetToMeters(12), 4);

var trajectory = TrajectoryGenerator.generateTrajectory (
sideStart, interiorWaypoints, crossScale, confiqg);

29

Following a Trajectory

Builtin Ramsete controller
calculate() method takes current position and
Trajectory.state (i.e. goal) as inputs

Example:

// sample the trajectory at 3.4 seconds from the beginning
Trajectory.State goal = trajectory.sample(3.4);
ChassisSpeeds adjustedSpeeds =

controller.calculate (currentRobotPose, goal);

Use kinematics classes to convert to wheel speeds
Use PIDcontrol to change wheel speeds '

30

FRC Java/C++ Simulator

Works as a good
debugger

Allows you to view
variables, threads, etc.

Simulates motor
controllers and various
sensors defined

31

Thank you for
attending

